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ABSTRQCT 

The periodic streamwise modulation of the supersonic and hypersonic 

boundary layers by a two-dimensional first-mode or second-mode wave makes 

the resulting base flow susceptible to a broad-band spanwise-periodic three- 

dimensional type of instability. The principal parametric resonance of this ins- 

tability (subharmonic) has been analyzed using Floquet theory. The effect of 

Mach number and the effectiveness of wall cooling or wall suction in control- 

ling the onset, the growth rate, and the vortical structure of the subharmonic 

secondary instability are assessed for both a first-mode and a second-mode pri- 

mary wave. Results indicate that the secondary subharmonic instability of an 

insulated wall boundary layer is weakened as Mach number increases. Cooling 

of the wall destabilizes the secondary subharmonic of a second-mode primary 

wave, but stabilizes it when the primary wave is a f i s t  mode. Suction stabilizes 

the secondary subharmonic at all Mach numbers. 

1. INTRODUCTION 

Interest in boundary-layer transition of high Mach number flows has increased, and 

boundary-layer transition has become an important factor influencing the design of the hyper- 

sonic vehicle - its configuration, thermal protection system, and its engine requirements. 

t Senior Scientist 
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Prediction and control of transition at high Mach numbers is extremely beneficial since skin 

friction and aerodynamic heating are considerably lower for laminar flows at high speeds. 

For compressible and high-speed boundary-layer flows, the stability problem is more com- 

plex than for incompressible flows, and the direct relationship between instability and transition 

is unknown. A thermal boundary layer with mean density variations develops in addition to 

the velocity boundary layer, leading to changes in the distribution of the angular momentum 

through the boundary layer. Due to this, the generalized inflection point (the location in the 

boundary layer where the gradient of the product of density and vorticity is zero) moves 

toward the outer edge of the boundary layer as Mach number increases. 

Compressibility is known to have a stabilizing effect on the primary wave, due to a 

change in the nature of the instability as Mach number increases. To describe the physical 

mechanism leading to the transition process in high-speed flows, the secondary instability 

approach is being used. This approach enables us to select the proper waves amongst a spec- 

trum of amplified three-dimensional (3D) waves to model the nonlinear interaction. 

Recent progress in the early nonlinear stage of transition, where strong three dimensional- 

ity takes place, has identified a major link in the transition process between the linear and fully 

nonlinear stages for incompressible boundary layers. It has shown that there is a well defined 

transition from laminar two-dimensional (2D) to laminar 3D waves through a secondary- 

instability mechanism. This mechanism has been reviewed for incompressible flows by Her- 

bert [l] and Bayly et al. [2]. The extension of the secondary instability theory in a spatial 

form to compressible and high Mach number boundary-layer flows was examined by El-Hady 

[3-61, and Masad and Nayfeh [7], while Ng and Erlebacher [SI examined the temporal theory. 

The linear growth of a primary wave may parametrically excite a secondary growth with 3D 

character. This secondary instability may not lead to transition by itself, but as it grows, it 

interacts with both the mean flow and the primary wave, leading rapidly to transition. 

At high speeds, the effect of cooling or suction in some of the early stages to transition 

needs to be fully assessed as means of transition control. This can serve the goal of optimizing 
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laminar flow control systems for supersonic and hypersonic vehicles. The effect of cooling or 

suction on the primary wave for high-speed flows depends on the type of instability in the 

boundary layer. This effect is well established in the literature, and it is briefly reviewed here. 

In the linear stage, and in the absence of cooling or suction, there exists one generalized 

inflection point in the compressible boundary layer. For subsonic and low supersonic boundary 

layers, the instability is of viscous type, and the most amplified disturbance is oblique, and is 

called the first mode. As the Mach number increases, the generalized inflection point moves 

toward the outer edge of the boundary layer until it disappears. With that, the viscous instabil- 

ity becomes weaker and the inviscid instability picks up. Consequently, the primary first-mode 

disturbance, which is dependent upon the presence of the generalized inflection point, is stabil- 

ized due to the change in the nature of the instability. Also, as Mach number increases, multi- 

ple eigenvalues of amplified and damped modes (Mack modes) appear in the solution of the 

compressible stability equations. The first of the Mack modes is called the second mode and is 

the most unstable of all the modes as a 2D disturbance. This mode is a high frequency, 

acoustical-type disturbance. 

As the boundary layer is cooled or sucked, a second inflection point appears. Both 

inflection points move away from the wall and then disappear as the cooling or suction 

increases. When this happens, the primary first-mode disturbance is completely stabilized. 

The effect of wall cooling on the primary stability of boundary layers was one of the 

significant findings of Mack’s calculations [9]. A primary first mode is strongly stabilized, and 

its most unstable frequency is decreased by cooling. In contrast, primary higher modes are 

destabilized by wall cooling, and the unstable frequency band shifts to higher values [lo]. 

This means that a wave with fixed frequency may be stabilized by sufficient cooling, but the 

growth rate of the most amplified primary second mode increases quite rapidly with cooling. 

Malik’s calculations [ll] for transition prediction on sharp cones using the eN method, showed 

that it is the first oblique mode and not the second mode that is responsible for transition up to 

about Mach number 7 (the first produces a higher value of N-factor than the second). This is 
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because, despite the fact that growth rates of the second mode are much higher, the streamwise 

extent of their region of instability is much shorter (producing lower value of N-factor). With 

wall cooling, the primary first mode is stabilized, while the primary second mode becomes 

more unstable with larger streamwise extent for a given second mode frequency. Consequently, 

as wall cooling increases, the second mode dominates the transition process, and its role 

becomes increasingly important at lower Mach numbers. 

Suction is more effective in stabilizing the viscous instability, and, hence, it is more 

effective at low Mach numbers [ l l ] .  As Mach number increases, the minimum amount of suc- 

tion needed to eliminate the generalized inflection point increases. The first mode is strongly 

stabilized by suction; on the other hand, suction loses its effectiveness in stabilizing the second 

mode at high Mach numbers [12]. With the increase in suction, the frequency of the most 

unstable second mode shifts to a higher value. Although a second mode with a k e d  fre- 

quency may be destabilized by suction, the growth rates of the most unstable frequencies 

decrease quite rapidly. 

The nonlinear evolution and breakdown in supersonic and hypersonic boundary layers, as 

well as the structure of the flow near transition, are still unknown. None of the high-speed sta- 

bility experiments were designed to study these phenomena. However, a temporal direct 

numerical simulation (DNS) of parallel compressible boundary layers performed by Erlebacher 

and Hussaini [13] was able to unveil a secondary instability at Mach number 4.5 triggered by 

the interaction between a finite amplitude 2D wave with a 3D (first mode) disturbance.. This 

instability was found to be weaker than those found in incompressible flows but qualitatively 

similar to the k-type breakdown. In a recent temporal DNS calculations of Mach 4.5 flow 

along a hollow cylinder, and Mach 6.8 flow along a 7 degree half-angle cone, Pruett and Zang 

[14] have confirmed that the subharmonic secondary instability is a viable path to transition in 

high-speed boundary-layer flow. On the other hand, with respect to the theoretical develop- 

ments, the secondary instability theory was extended by the author [3-61 and by others [7,8] for 

compressible boundary layers. 
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In this paper, we study the linear secondary 3D instability of supersonic and high-speed 

flows. We investigate the effect of a small, but finite-amplitude, 2D or oblique compressible 

Tollmien-Schlichting (TS) wave on the growth of 3D perturbations in supersonic boundary 

layers, and the effect of small, but Mite-amplitude, 2D second mode on the growth of 3D per- 

turbations in hypersonic boundary layers. The study focuses on the growth of the secondary 

subharmonics due to their importance in a low disturbance environment. The influence of wall 

cooling and suction on the onset, growth rate, and the vortical structure of the secondary insta- 

bility of the boundary layer is also investigated in order to assess their effectiveness as means 

of transition control at high speeds. Some early results of this work were described by the 

author elsewhere [6].  In section 2, the analysis is developed. Section 3 discusses the numeri- 

cal procedures. Results and discussions are given in section 4. Then, we end with concluding 

remarks in section 5. 

2. ANALYSIS 

The flow field is described by the laminar compressible 3D Navier-Stokes and energy 

equations. Lengths, velocities, and time are made dimensionless using a reference length 

L = ( V ~ / U ~ ~ ) ~ / ~ ,  the free-stream velocity uo-, and L/uo.., respectively. Here, x is the distance 

from the leading edge of the flat plate and vow is the kinematic viscosity coefficient evaluated at 

the free stream. The pressure is made dimensionless using pb u L .  The temperature, density, 

specific heats, viscosity, and thermal conductivity of air (treated as perfect gas) are made 

dimensionless using their corresponding free-stream values. In terms of these dimensionless 

quantities and in a vectorial form, the governing equations read 

-+V.(pV) aP = 0 
at 

=+v.@VV) = -vp+-v.z 1 
at R 

ae a 1 1 
at at R RP, 

p(-+V.VB) = &1)M? [p+V.Vp+-@] + -V.gl.VB) 
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with the state equation 

= p8. (4) 

In the above equations, 2 is the dimensionless viscous stress tensor, and dr is the dimensionless 

dissipation function. They are defined as 

2 = p[VV+(VV)T]+hV.vI (5 )  

Also, is the ratio of specific heats, M ,  is the free-stream Mach number, R=pb ub L I ~ ~  is 

Reynolds number, P,=c,Nk is Prandtl number, p and 3L are the first and second coefficients of 

viscosity, respectively, I is a unit tensor, and T denotes a transpose. 

The basic flow consists of a 2D compressible locally parallel boundary layer modulated 

by a small, but finite-amplitude, compressible TS or oblique wave, here called the primary 

wave. The basic flow is assumed to be a solution of the equations of motion; it takes the form 

where 

-JaidX 
A = A ( x ) = A , e  , 

cc denotes a complex conjugate, and A. is an initial amplitude. For the spatial stability 

analysis, a is the complex wavenumber of the primary wave, defined as a = a,+iai , and o is 

the frequency, which is real. We shall consider the variation of the primary amplitude, A ( x ) ,  in 

Eq (8) to be weak. This variation will be neglected, and A is assumed to be locally constant. 

Also, we shall neglect terms U ( A 2 )  in the analysis and assume that the 2D compressible flow is 

modulated only by a periodic component of the linear stability problem. Justification of these 

assumptions was considered in [5]. 
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In Eq (7), qo stands for boundary-layer flow quantities uo,po,  eo. po, and h, while q 1  stands 

for the eigensolutions of the primary wave; they are ul, v l ,  pl,  el , pl, and pl. These quantities 

represent velocities, pressure, temperature, density, and viscosity, respectively. Of course, y is 

the normal distance from the plate surface. With the assumption of constant pressure gradient 

across the mean boundary layer, the state equation relates the boundary-layer temperature and 

density profiles by 

and also relates the primary density disturbance to the temperature and pressure disturbances 

by 

The boundary-layer viscosity is related to the temperature through Sutherland’s law, while the 

primary viscosity disturbance is assumed to be linearly related to the temperature disturbance 

by 

p1 = ---e1 d h  + O(A2).  
d 80 

The eigenfunctions, q l ,  in Eq (7) are normalized such that the amplitude, A ,  of the primary 

wave measures directly the maximum root-mean-square value of the mass-flow disturbance in 

the flow direction. That is 

where ml is the mass-flow disturbance, given by 

El-Hady [5] used the streamwise velocity perturbation to normalize the eigenfunctions, 41. 

That choice was adequate for the low range of Mach numbers. As Mach number increases, the 

temperature disturbance increases rapidly, and the mass-flow disturbance seems more appropri- 

ate for this normalization. 

4 w 
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The eigenfunctions of the primary wave are governed by a sixth-order system of equations 

for a 2D primary wave, or by eighth-order system of equations for a 3D primary wave. 

2.2. The Secondary Instability 

To study the linear 3D instability of the basic flow given by (7), we superpose a small 

unsteady disturbance on each velocity, thermodynamic, and transport quantity of the basic flow. 

That is, we let 

where 42 is a secondary disturbance eigenfunction that represents velocities u2, v2, w2 in the 

x ,y ,Z directions, pressure p 2 ,  temperature e2, density p2, and viscosity p2; they are normalized 

such that the amplitude, B ,  of the secondary disturbance measures the maximum root-mean- 

square value of the secondary mass-flow disturbance, m2, which is given by 

where the overbar indicates a complex conjugate. In a linear analysis, the amplitude, B ,  of the 

secondary disturbance is assumed small compared to the amplitude, A ,  of the primary wave in 

such a way that the primary will influence the modulation of the secondary, but not vice versa. 

The basic flow given by (7) neglects the nonlinear distortion of the eigenfunction, 41, at a 

finite amplitude of the primary wave. This has been justified in the incompressible secondary 

instability theory [l] on the basis that the 3D secondary instability occurs at small amplitudes 

of the primary wave, where the nonlinear distortion is weak. It was also noticed that the vorti- 

cal nature of the 3D secondary instability is not affected by the nonlinearity. These 

justifications are still valid for the compressible secondary instability theory, if we accept the 

notion that compressibility will probably retard and attenuate any nonlinear distortion. 

Equation (14) is substituted into Eqs (1-6), the basic flow is subtracted, and the resulting 

equations are linearized with respect to the secondary disturbance, q2. We end up with five 

coupled partial differential equations for the secondary 3D instability. The coefficients of these 
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stability equations are functions of the basic flow and its derivatives, are independent of the 

spanwise coordinate Z ,  and are periodic in x and t .  Hence, the z-variation can be separated, 

and the Floquet theory of differential equations with periodic coefficients can be applied to 

give a solution to these equations in the form 

q2(~ ,y ,z , t )  = eY*+Ot erpz $(x,y,t) (16) 

where p is a real spanwise wavenumber of the secondary disturbance. It is a measure of the 

angle of divergence of the direction of propagation of the secondary disturbance from the 

primary-wave vector. Also, y=yr+iyi and ~ = o ~ - t i o ~  are two complex characteristic exponents, and 

$(x,y,t) is a periodic function of (x-coria), the same as the period of the basic flow. We express 

$(x,y,t) in terms of Fourier series to obtain the following expression for 42(x,y,z,t) 

Equation (17) represents a general Floquet form for the eigenmodes of a periodic basic 

flow. The subharmonic and fundamental modes are special cases of this form. Given two 

values of the four real exponents, yr,  yi, or, and oi, in Eq (17), the solution of the resulting 

eigenvalue problem determines the other two values. For the purpose of our study of the spatial 

instability of subharmonic modes, we let yr represent the growth rate of the secondary distur- 

bance, or=O (no temporal growth), oi=-co/2 for a pure subharmonic mode, and let ‘yi represent 

the shift in the streamwise wavenumber of the secondary wave with respect to the primary one 

(detuned modes). A value of yi =-a12 means that the secondary disturbance is tuned with the 

basic state. 

The truncation and convergence of the Fourier series in Eq (17) is important for the 

numerical results. For the incompressible flat-plate boundary layer, Herbert et al. [15] have 

shown that this series converges rapidly and the lowest truncation provides sufficient accuracy 

for practical purposes. Also, in their temporal compressible stability analysis, Ng and 

Erlebacher [8] have studied the convergence of the Fourier modes at M,=1.6, and at M--4.5. 

They concluded that, for a 2D primary wave, the streamwise structure of the subharmonic 
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disturbance can be accurately captured by using only two Fourier modes just as in the 

incompressible flow. 

For the spatial numerical treatment in this paper, the lowest possible truncation of Fourier 

series for subharmonic modes is used, that is 

1 .  
2 

--6(ou-ot) 1 .  

Q ~ ( x , Y , z , ~ )  = eY*e'Pz [@l(v)e + @-l(vk 1 (18) 
-1 ( C ( X - o I )  

When the secondary instability is tuned with the basic state, then @-l = &. Using Eq (lS), the 

governing equations for the 3D subharmonic instability (governing @l) can be written in the 

form 

(a D2+b D + c )  @1 = A ( d  D2+e D + f )  $1 + O(A2)  (19) 

with a similar set of equations for (L~, where 

q1 = (u2, v2, w2,  p2 ,  e21Tt 

D=dldy , and a ,  b , c , d ,  e ,  f are 5x5 matrices that are dependent upon the basic flow. 

The density secondary disturbance, p2, is related to the pressure secondary disturbance, p 2 ,  

by the state equation 

?M? ~2 = Po02 + 00P2 + A (piG2+01p2) + 0 (A2), (21) 

while the viscosity secondary disturbance, p2, is related to the temperature secondary distur- 

bance, 02, through a Taylor's expansion of the total viscosity that yields 

The system of Eqs (19) governs the spatial secondary 3D subharmonic instability of 

compressible 2D flows. They are five coupled ordinary differential equations for u2, v2, w2 ,p2 ,  

and When supplemented with homogeneous boundary conditions, they constitute an eigen- 

value problem in the form 

y=  ua, p., R ;  A )  
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for given boundary-layer velocity and temperature profiles, u ,,Cy) and O&), respectively. 

3. N ~ E R I C A L  PROCEDURES 

The mean-flow equations (Appendix A) are numerically integrated by using a combination 

of a shooting technique and Runge-Kutta integrator. The thermodynamic and transport proper- 

ties of the perfect gas are computed at each integration step as they vary with the temperature. 

The primary instability which modulates the 2D compressible boundary layer is governed 

by six first-order sets of ordinary differential equations. They are numerically integrated as an 

initial value problem using a fi-ee-stream solution as the initial condition. 

In this study, we limit our concern to the subharmonic instability that is tuned with the 

basic flow. The system of Eqs (18) may be written, by neglecting terms 0 (AIR ), as eight first- 

order complex equations in the form 

8 8 

1 =1 1 =I 
gdZl = A x h d z ,  n = 1,2,..,8 

with the boundary conditions, 

Z 1  = Z 3  = 2 5  = 2 7  = 0 at y=O 

Z 1 ,  Z3, Z5, Z7 +O as y-+= 

where 

and gd , and hd , n ,I=1,2,..8 are the elements of 8x8 variable coefficient matrices. They are given 

in Appendix B. While the gnl are functions of the mean flow, frequency, and wavenumber of 

the subharmonic, the hnl are functions of the basic flow parameters (including the primary 

wave). 
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We assume that the amplitude of the primary wave vanishes in the free stream at y a e ,  

where e denotes the edge of the boundary layer. Then, the system (24) will have constant 

coefficients and can be solved analytically, producing four linearly independent, exponentially 

decaying solutions to conform with the boundary condition (26). With the free-stream solution 

as initial condition, Eqs (24) are integrated from y=ye to y=O at the wall, using a variable step- 

size algorithm [ 161, based on the Runge-Kutta-Fehlburg fifth-order formulas. The step-size is 

adjusted during the integration process so as to keep an estimate of the local error per step 

below a specified tolerance. However, the acceptable solution is delivered at pre-assigned 

fixed grid in y. 

A straightforward integration fails to produce four linearly independent solutions because 

of the buildup of parasitic errors among the different solutions. To overcome this difficulty, 

the integrator used is coupled with an orthonormalization test that is based on a modified 

Gram-Schmidt procedure. Since testing for independence after each integration step is expen- 

sive, we use a modified algorithm [17] and choose a preselected set of points where orthonor- 

malization is performed. These points are assigned a priori with sufficient frequency by using 

information about the points where orthonormalization is needed. To obtain a nontrivial solu- 

tion to the homogeneous equations (24) for a guessed eigenvalue, the eigensolution is normal- 

ized by the value of a nonvanishing perturbation quantity at the wall (e.g. Zz, Z4, Z6,  or &). 

This is equivalent to imposing a nonhomogeneous boundary condition at the wall to avoid a 

trivial solution. At the wall, the values of the linearly independent solutions are linearly com- 

bined to satisfy all but one of the wall boundary conditions (2, = 0). A Newton-Raphson tech- 

nique is used to iterate on the eigenvalue to satisfy the missing wall boundary condition to 

within a specified accuracy of O(SO-~). 
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4. RESULTS AND DISCUSSION 

Experiments indicate that the subharmonic instability mechanism leading to breakdown is 

favored when the amplitude of the primary wave is low or moderate, whereas the fundamental 

breakdown occurs for higher primary amplitudes. Because flight applications are mostly charac- 

terized by a low-disturbance background, the subharmonic 3D instability appears to be more 

realistic and more dangerous in such applications. 

In a supersonic boundary layer, 3D primary waves become dominant, having an oblique 

angle about 40"-60" for the most unstable wave. The influence of the primary wave angle on 

the secondary growth rate was examined by Ng and Erlebacher [8] at Mach number 1.6. Their 

investigation was temporal and local. They concluded that the strongest subharmonic modes 

occur when the primary wave propagates in the mean-flow direction, and that they are tuned 

with the basic state (having the same phase velocity as the 2D primary wave). They also con- 

cluded that, with a primary-wave angle of 45", the secondary subharmonic growth rate is much 

less than the 2D case, and that the first five Fourier modes, see Eq (18), are required to capture 

the secondary growth rate correctly. 

For the previous reasons, we focus our study on the possibility of the formation of strong 

three dimensionality of the subharmonic type from purely 2D compressible basic flow. Results 

reported here show that a parametrical excitation by the finite amplitude primary wave will 

produce strong growth of secondary 3D subharmonics along a broad band of spanwise 

wavelengths. All reported results use a nondimensional frequency, F ,  defined as F = 1060/R, 

and a spanwise wavenumber parameter, b ,  defined as b = 103p/R. They represent a wave travel- 

ing downstream with a fixed physical frequency and with a fixed physical spanwise 

wavenumber. 

In the next subsection, we study the insulated-wall boundary layer and discuss the effect 

of Mach number on: 1) the secondary instability growth rates, 2) the induced 3D vortical struc- 

ture, 3) the mode shape of the secondary disturbances, and 4) the effect of the free stream tem- 

perature on the growth of the secondary subharmonics. In the following subsections, we 
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discuss the effect of wall cooling and the effect of suction. In these calculations, cooling or 

suction are applied through the entire boundary layer development. This is expected to 

influence both the mean flow and the amplitude of the primary wave. We will study the effect 

of wall cooling and suction both locally and globally. A local study means that both Reynolds 

number and the primary-wave amplitude are fixed (does not mean that cooling and suction are 

applied locally). This represents the influence of the mean flow modifications alone on the 

secondary subharmonics. However, the global effect of wall cooling and suction includes the 

effect of the change in the amplitude of the primary wave, as well as the increase in Reynolds 

number as the disturbance develops downstream. 

4.1. Effect of Mach Number 

Figure 1 compares the growth rates of the secondary subharmonic mode at Mach numbers 

1.6, 2.2, 3.0, and 4.5 for an insulated wall boundary layer. Calculations are performed at a 

free-stream stagnation temperature 6, = 311K, and R = 800. The primary wave is 2D first mode 

with a frequency F = 60 and amplitude A ,  = 0.06 (the subscript m refers to mass flow). The 

figure has basically the same features as subharmonic growth rates in incompressible [l, 181 

and low Mach number [5] flows: the large values of the growth rates, the broad band of 

unstable subharmonics, and the sharp cutoff at low spanwise wavenumbers. The strong growth 

of the secondary subharmonics compared to that for the primary waves (which is 0(10-~) or 

less), especially in the region of interest where they are mostly unstable, justifies the assump- 

tion of neglecting the variation of the primary amplitude and considering it as locally constant 

(see Eq (8)). 

At these conditions, Figure 1 indicates that compressibility has a stabilizing effect on the 

secondary subharmonic instability, with a considerable decrease in the growth rates and reduc- 

tion in the unstable band of the spanwise wavenumbers as Mach number increases. It should 

be noted that at a k e d  frequency, F ,  an increase in the Reynolds number and/or the amplitude 
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of the primary wave will result in an increase of the growth rates as well as the unstable band 

of the secondary subharmonics for all Mach numbers. At the local conditions of Figure 1, it 

seems that the mechanism of the secondary subharmonic instability, resulting from the 

parametric excitation by the finite-amplitude first-mode primary wave, is weakened as Mach 

number increases. 

At different Mach numbers, Figure 2 shows the variation across the boundary layer of the 

root-mean-square values of the secondary subharmonic disturbance normalized with respect to 

m2. The corresponding variations for the primary first-mode disturbances normalized with 

respect to m l  are shown in the same figure for comparison. These calculations are performed 

at R = 800, F=60, A, = 0.06, and b d . 1 8 .  

The location of the critical layer, indicated in Figure 2 by y c ,  moves away from the wall 

as Mach number increases, followed by the peak amplitudes of all the primary and secondary 

disturbance quantities. At high Mach numbers, fluctuations take place near the edge of the 

boundary layer. In comparison with other secondary disturbance quantities, v 2  is very small, 

while the primary, v1 disturbance has a considerable value. As Mach number increases, both 

the primary and secondary temperature disturbances increase rapidly, with a second peak 

developing near the wall for the primary disturbance. Both the streamwise and spanwise velo- 

city components (u2 and w2) of the secondary disturbance, which have considerable amplitudes 

at low Mach numbers [5] ,  diminish as Mach number increases. The figure also shows that the 

rate of decay of the secondary disturbances in the free stream is much faster than the rate of 

decay of the primary waves. 

With the onset of the secondary instability, three-dimensionality is induced in the flow 

field, and the initial 2D vorticity of the base flow is deformed, producing a vortical structure. 

Figure 3(a) shows the spanwise vorticity contours of the total flow (the mean flow, the 2D pri- 

mary wave, and the 3D secondary subharmonic) in the x-y plane at z=O for several Mach 

numbers. The figure is plotted over four primary wavelengths, and for the amplitudes 

A,=B,=O.M for the primary and secondary disturbances, respectively. The vortices are inclined 
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at an angle to the mean-flow direction. As Mach number increases, these vortices extend to 

and concentrate around the critical layer (the tick mark on the left side of each graph indicates 

the position of the critical layer). The spanwise velocity variations produce a streamwise vorti- 

city shown in Figure 3(b) and plotted over two spanwise wavelengths in the Z-y plane at x=O, 

for the same Mach numbers. It shows counter-rotating vortices extending away from the wall 

toward the critical layer as Mach number increases. The interaction between the streamwise 

vorticity and the deformed spanwise component is the main drive to flow breakdown. 

At high Mach numbers, a primary 2D second mode dominates the primary stage, and a 

parametical excitation of its finite amplitude produces the growth of a secondary 3D subhar- 

monic along a broad band of spanwise wavelengths. Figure 4 shows the growth rates of these 

secondary subharmonics at Mach numbers 4.5 and 7.0. These calculations are for a free- 

stream temperature 12OK and R = 1000, and the primary wave is a 2D second mode with ampli- 

tude A, = 0.06 and frequency F = 200 for M, = 4.5, and F = 180 for M, = 7.0. 

The normalized variation across the boundary layer of both the secondary subharmonic 

and the primary wave is shown in Figure 5 for Mach numbers 4.5 and 7.0. Calculations are 

performed at the most unstable subharmonic spanwise wavenumbers corresponding to Figure 4. 

Figure 5 shows that the critical layer 0,) moves toward the edge of the boundary layer as 

Mach number increases. Both the primary and the secondary temperature and mass flow dis- 

turbances have sharp peaks compared to their counterpart first mode in Figure 2. The v 2  distur- 

bance is almost vanishing, while the induced spanwise velocity, w2, disturbance is very small. 

In spite of the weak growth of the subharmonic secondary instability at these hypersonic 

Mach numbers, the flow field is completely altered due to a vortical structure produced by the 

secondary instability. As shown in Figure 6, this structure is concentrated around the critical 

layer (the tick mark on the left side). The figure shows components of the angular momentum 

(the vorticity modulated by the mean density). The spanwise angular momentum is inclined to 

the mean-flow direction (Fig 6(a)), while the streamwise angular momentum shows counter 

rotating vortices (Fig 6(b)). Figure 6 is plotted over four primary streamwise wavelengths in 
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the x direction, over two subharmonic spanwise wavelengths in the z direction, and for the 

amplitudes A,=B,= 0.06 of the primary and secondary disturbances, respectively. 

For the insulated-wall boundary layer, it is noted in Figure 7 that the &-stream tempera- 

ture affects the growth rate of the secondary instability. The influence of the free-stream tem- 

perature, e,, comes through the viscosity and the thermal conductivity of the mean flow and 

the primary wave. Figure 7(a) shows that at M, = 1.6, the growth rate of the secondary subhar- 

monic increases slightly with the increase in the free-stream temperature (the primary wave is a 

2D first mode). Figure 7(b) shows the opposite; at M ,  = 4.5, the growth rate of the secondary 

subharmonic decreases sharply with the increase of the free-stream temperature (the primary 

wave is a 2D second mode). Although our calculations at these conditions indicate that the 

growth rate of the primary wave (first mode or second mode) decreases as the free-stream tem- 

perature increases, results in Figures 7 are calculated for a fixed amplitude of the primary 

wave. 

4.2. Effect of Wall Cooling 

The effect of wall cooling on the subharmonic secondary instability is investigated at 

Mach numbers 0.8 and 1.6 using a 2D first-mode primary wave, and at Mach number 4.5 using 

a 2D second-mode primary wave. The wall cooling parameter, eW,end, is used for this purpose, 

where the suffixes w and ad refer to wall and adiabatic wall conditions, respectively. Cooling 

the wall influences both the mean flow and the amplitude of the primary wave. The net out- 

come depends largely on identifying the major disturbance in the flow field. First-mode and 

second-mode primary disturbances give opposite effects. 

The local effect of cooling (both Reynolds number and the amplitude of the primary are 

fixed) is demonstrated at different Mach numbers in Figure 8. The figure shows that, whether 

the primary wave is a first mode (Figures 8(a) and 8(b)) or a second mode (Figure 8(c)), cool- 

ing can be stabilizing or destabilizing depending on the spanwise wavenumber of the secondary 
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subharmonic (a similar conclusion was reached by El-Hady [5] concerning the local effect of 

compressibility, which also can be stabilizing or destabilizing depending on the amplitude of 

the primary wave and the spanwise wavenumber of the secondary subharmonic). 

At all Mach numbers in Figure 8, we notice that cooling shifts the most unstable spanwise 

wavenumber to a higher value and stabilizes it. The local effect of wall heating is shown to be 

stabilizing at low Mach numbers in contradiction with its known destabilizing effect. Wall 

heating effect is not investigated at higher Mach numbers since it is not practical; the adiabatic 

wall temperature is already high for metal structures. 

Figures 9 and 10 show a comparison of the eigenfunctions of the secondary disturbance at 

different wall cooling levels at Mach numbers 1.6 and 4.5, respectively. In both figures, the v 2  

component (not shown) is very small and is only slightly affected by wall cooling. Primary- 

wave eigenfunctions are also shown in both figures for comparison. Wall cooling tends to 

move the critical layer closer to the wall (the opposite occurs for wall heating), and the max- 

imum amplitudes of both the primary and the secondary waves follow. This is true whether 

the primary is a first-mode wave (its growth rate decreases by cooling), or the primary is a 

second-mode wave (its growth rate increases by cooling). So, the stabilizing or destabilizing 

mechanism due to wall cooling does not depend on this fact. While the value of the maximum 

amplitude of the velocity components ( u 2 , 4  is hardly affected by wall cooling (or heating), 

the temperature amplitude changes drastically. At M,=4.5, we notice an opposite effect of 

wall cooling on the two temperature peaks of the 2D second-mode primary wave. The wall 

peak is destabilized by cooling, while the outer peak is stabilized. 

The vortical structure that appears in the flow field due to the secondary instability is 

affected by wall cooling or wall heating. At Mach number 1.6, Figure 11 shows that effect on 

the contours of the 2D-spanwise and 3D-spanwise angular momentums, that is before and after 

the onset of the secondary instability. Figure 12 shows the same effect on the contours of the 

3D-spanwise and streamwise angular momentums at Mach number 4.5. These figures are plot- 

ted over four primary streamwise wavelengths in the x direction, over two secondary spanwise 
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wavelengths in the z direction, and for the amplitudes A,=8,=0.02 for the primary and secon- 

dary disturbances, respectively. Notice that these figures show a local cooling effect where 

both R and A are fixed. This effect represents the influence of the mean-flow modification due 

to wall cooling on the components of the vortical structure. Regions of concentrated spanwise 

angular momentum are convected downstream, confining themselves near the wall, as the wall 

cooling level increases. The concentrated angular momentum follows the critical layer (tick 

mark on the y-axis) as wall cooling level changes. Figure 11 shows that wall heating at 

M, = 1.6 has an opposite effect, where the vortical structure stretches away from the wall. 

The local effect of wall cooling or heating has no practical value. To evaluate the overall 

effect on the onset and growth rate of the secondary 3D subharmonic, we should combine the 

effect of the change in the amplitude, A ,  of the primary wave, as well as the increase in R as 

the disturbances develop downstream. This is shown in Figures 13 and 14 at different Mach 

numbers. In these calculations, the initial amplitude of the primary wave is assumed at its first 

neutral point, and the spanwise wavenumber parameter, b ,  is held fixed. At Mach numbers 0.8 

and 1.6 (Figures 13(a) and 13(b), respectively), we use a 2D first mode as a primary wave. 

These figures show that the total effect of wall cooling is to delay the onset of the secondary 

instability and to significantly decrease its growth rate. Heating has the opposite effect. 

Notice that while wall heating is locally stabilizing (see Figures 8(a) and 8(b), its overall effect 

is to completely destabilize the secondary subharmonic at these Mach numbers. In Figure 13, 

it is worth to notice the explosive growth rates of the 3D secondary subharmonic disturbances 

compared to the primary wave as Reynolds number increases. Also, with a cooling parameter 

0.85 at M, = 0.8, and with initial primary amplitude A,,, = 0.0023, the primary growth is almost 

zero, while (not shown in the figure) a considerable 3D growth takes place. At M,= 1.6, and 

with initial primary amplitude AOm = 0.01, the cooling parameter 0.8 overstabilizes the primary 

wave, yet large growth of the 3D secondary subharmonic takes place. 

At M ,  = 4.5, and for a second-mode primary wave, Figure 14 shows the effect of cooling 

on the primary wave as well as the overall effect of cooling on the onset and the growth rate 
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of the 3D secondary subharmonic. The figure emphasizes the known fact that the primary 

wave (second mode) is destabilized by cooling. The figure shows that, in spite of the delay in 

the onset of the 3D secondary subharmonic, its growth rate increases rapidly with wall cooling. 

Notice that at this Mach number the 3D growth is not explosive; it is of the same order as the 

primary wave when the initial amplitude of the primary, A,, is 0.01. The 3D growth 

increases as AOm increases (shown in the figure for AOm = 0.03), with the total effect of cooling 

still destabilizing. Figure 14 shows that, although the growth rates of the 3D subharmonic 

increases with wall cooling, the streamwise extent of the unstable region is reduced. A secon- 

dary amplification factor (we call it an S-factor) is defined as S = In (BIB,), with B o  as the initial 

amplitude of the secondary disturbance. The S-factor is calculated and compared, in Figure 15, 

with the primary amplification factor (known as N-factor an defined as N = In (A/Ao)). The 

figure demonstrate clearly the overall destabilizing effect of wall cooling on both the primary 

wave and the secondary subharmonic at M, = 4.5. 

4.3. Effect of Suction 

The similarity suction parameter, yo, defined in Appendix A, is used to investigate the 

effect of suction control on the secondary instability at Mach numbers 0.8, 1.6, and 4.5. 

Moderate suction of the boundary layer stabilizes the mean flow and reduces the amplitude of 

the primary wave. 

Figure 16 demonstrate the local effect of suction (both Reynolds number and the ampli- 

tude of the primary wave are fixed) at M, = 0.8, 1.6 (primary wave is a first mode), and M, = 4.5 

(primary wave is a second mode). They show the influence of the mean-flow modification by 

suction on the secondary subharmonic growth rates. Contrary to the findings in the previous 

section (Figure 8) of the mixed effect of wall cooling at fixed R and A ,  Figure 16 shows that 

suction, at fixed R and A ,  reduces the growth rate of the whole unstable band of the secondary 



21 

subharmonic and limits it to fewer unstable spanwise wavenumbers. These results are in har- 

mony with previous results by El-Hady [18] on the effect of suction in controlling the secon- 

dary instability for incompressible boundary layers. Comparison of the incompressible results 

[18] and the results in Figures 16(a), and 16(b) show that the effectiveness of suction decreases 

as Mach number increases when the primary wave is a f i s t  mode. We notice that, while the 

most unstable spanwise wavenumber is hardly influenced by suction at Mach numbers 0.8 and 

1.6 (in agreement with the incompressible results in [18]), the most unstable spanwise 

wavenumber becomes higher as suction level increases at Mach number 4.5; where the primary 

wave is a second mode. These results differ from the wall-cooling case where, at all Mach 

numbers, the most unstable spanwise wavenumber becomes higher as wall cooling increases. 

Figure 17 shows the effect of suction on the eigenfunctions of both the primary and the 

secondary subharmonic at M, = 1.6, where the primary is a 2D first mode. Figure 18 shows the 

effect of suction on a second-mode primary wave and the resulting secondary subharmonic. 

Suction, like wall cooling, tends to move the critical layer closer to the wall, followed by the 

peak amplitudes of both the primary and the secondary waves. 

Figure 19 shows the effect of suction on the vortical structure at M ,  = 1.6 before and after 

the onset of the secondary instability. The figure shows contours of the spanwise component 

of the angular momentum of the flow field. The contours are plotted over four primary 

wavelengths with amplitudes of the primary and secondary disturbances of equal magnitude. 

With suction, the concentrated spanwise angular momentum is confined nearer to the wall, fol- 

lowing the critical layer. 

The overall effect of suction, like wall cooling, on the onset and growth rate of the secon- 

dary instability incorporates the changes in both R and A as the disturbance develops down- 

stream. Because the local effect of suction proved to be always stabilizing for different Rey- 

nolds numbers and primary amplitudes, we expect that the overall effect of suction is always 

stabilizing. Figures similar to 13(a) and 13(b) are expected at M, = 0.8 and M, = 1.6, but with 

suction instead of wall cooling. 
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At M, = 4.5 and for a second mode primary wave, Figure 20 shows the effect of suction 

on the primary wave as well as the overall effect of suction on the onset and growth rate of the 

3D secondary subharmonic. The figure emphasizes the known fact that the primary wave 

(second mode) is stabilized by suction. The figure shows that not only is the onset of the 

secondary subharmonic delayed by suction, but also the maximum growth rate is decreased and 

the streamwise extent of the subharmonic instability is reduced. Again, as we discussed before 

at this Mach number, the 3D growth is not explosive; it is of the same order as the primary 

wave when the initial amplitude of the primary A,,, = 0.01. The 3D growth increases as A ,  

increases (shown in the figure for Ao,  = 0.03), with the total effect of suction still stabilizing. 

This indicates that the S-factor will be significantly decreased by suction. 

5. CONCLUDING REMARK$ 

We have investigated the principal parametric resonance of the spatial three-dimensional 

instability of high-speed boundary layers due to small, but finite-amplitude, two-dimensional, 

compressible Tollmien-Schlichting waves. Control of these early transition instabilities by wall 

cooling or suction is studied. 

Computations performed for primary first- and second-mode waves show that the spatial 

growth rates of the induced secondary subharmonics are substantially weakened as Mach 

number increases. In spite of the weak growth of the secondary subharmonics at high Mach 

numbers, the flow field is completely altered by a vortical structure that is concentrated around 

the critical layer. The contrast between the explosive nature and the weak growth of the 

subharmonics at low and high Mach numbers, respectively, suggests that the secondary insta- 

bility mechanism may hold a more significant and dominant role in the transition process as 

Mach number increases. 

The normal component, v2, of the secondary disturbance almost vanishes as Mach number 

increases. Both the streamwise and the spanwise velocity components of the secondary distur- 

bance, which have a considerable amplitude at M, = 0, decrease rapidly as Mach number 
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increases, affecting the production of the spanwise and the streamwise components of the angu- 

lar momentum, respectively, and, hence, may be slowing the process of breakdown. 

The free-stream temperature influences the growth rate of the secondary subharmonic. At 

M, = 1.6, where the primary wave is a 2D f i s t  mode, the growth rate increases slightly with the 

increase in the free-stream temperature. At M, = 4.5, where the primary wave is a 2D second 

mode, the growth rate decreases sharply with the increase in the free-stream temperature, 

At the investigated Mach numbers, the local effect of wall cooling can be stabilizing or 

destabilizing depending on the spanwise wavenumber of the secondary subharmonic. But the 

most unstable spanwise wavenumber is stabilized and shifted to a higher value as wall cooling 

increases. On the other hand, the local effect of suction is always stabilizing, the growth rates 

of the secondary subharmonics are reduced, and the band of unstable spanwise wavenumbers is 

narrowed. The most unstable spanwise wavenumber is not influenced by suction at low Mach 

numbers, but it becomes higher as suction level increases at M, = 4.5, where the primary wave 

is a second mode. 

Practically, the overall effect of compressibility, wall cooling, or suction includes the 

changes in Reynold number and the primary-wave amplitude as any instability wave develops 

downstream. When these changes are incorporated into the calculations, compressibility was 

shown here and in [5] to stabilize the secondary subharmonic instability. Also, suction is 

shown to stabilize the secondary instability, due to a first- or a second-mode primary wave. 

The onset of the instability is delayed, the growth rates are reduced, and the streamwise extent 

of the instability is narrowed. 

The overall effect of cooling is also shown to stabilize the secondary instability in the 

same way suction does at low Mach numbers, where the primary wave is a first mode. At 

higher Mach numbers, where the primary wave is a second mode, wall cooling does delay the 

onset of the secondary instability and narrows its streamwise extent, but the growth rate of the 

secondary subharmonic increases rapidly, resulting in a higher S-factor and thus destabilizing 

the boundary layer. 
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APPENDIX A: The Compressible Mean Flow 

The 2D compressible boundary-layer equations for zero pressure gradient and with suction 

and heat transfer are reduced to the following set of ODE'S and boundary conditions: 

(ppu'j + gu' - 'you' = o 

( p p 0 ' ~ ~  j + g 0' + 2ppi2 - roe' = o 

* 1  
2 

g - - p u = o  

u =o, g =o, 0 '=0  or 0 = 0 ,  at q = o  

u + 1, 0 + O  as q+qe 

by using the transformation 

(R,)1'2 
r\ = -jP dY 

x o  

as well as a stream function to satisfy the continuity equation. Here, R, is the free-stream x- 

Reynolds number, p is the density, x is the distance along the plate, y is the distance normal to 

it, and 

where h and ho are the fluid enthalpy and the stagnation enthalpy, respectively, e and w denote 

conditions at the edge of the boundary layer and at the wall, respectively, and yo is the similar- 

ity suction parameter. 

The variation of the viscosity, p, and thermal conductivity, k, of the perfect gas with tem- 

perature 8 are given in [4]. For the variation of the enthalpy and Prandtl number with 



25 

temperature, the NBS perfect gas tables are used. The specific heat, c P ,  is computed from the 

definition of Prandtl number using the calculated values of p and k and the tabulated values of 

P r .  

APPENDIX B: Nonzero Elements of Matrices g and h in Eq (24) 
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Here, m = 2(e-1)/3 is the ratio of the second viscosity coefficient, A,,, to the first viscosity 

coefficient, h; e=O corresponds to the Stokes hypothesis, but it is taken as 0.8 in this analysis. 

Also, ml=m+l, mZ=m+2, P&dMdeO, b+=dpddeO, and, 

1 
2 

A = yr + -iar 

1 
2 

V = Auo+ bi - -iw 

x = 1/(1 + m2 p$M?VIR) 
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Figure 1 Effect of Mach Number on the growth rate and the unstable band of the spanwise 

wavenumbers of the secondary subharmonics at R = 800, F = 60, A, = 0.06, and 0, = 311K. The 

primary wave is a 2D first mode. 
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Figure 4 Effect of Mach number on the growth rate and the unstable band of the spanwise 

wavenumbers of the secondary subharmonic due to a 2D second mode primary wave at 

R = 1000, F = 200 for M, = 4.5, F = 180 for M, = 7.0, A, = 0.06, and 8, = 120K. 
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Figure 5 Variation across the boundary layer at hypersonic speeds of the primary 2D second 

mode and the secondary subharmonic eigenfunctions at the most unstable spanwise 

wavenumber (b=0.22 at M - 4 . 5 ,  and b=0.15 at M,=7.0) and the conditions of Figure 4. 

P B a I. 
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Figure 7(a) Effect of the free-stream temperature on the growth rate and the unstable band of 

spanwise wavenumbers of the secondary subharmonics. M, = 1.6, R = 800, F = 60, A, = 0.06, 

and the primary wave is 2D first mode. 



37 

a, 
cd 
k 

-4 

0 
k 

ul 

h 
d 
k 

XIO-~ 
4 

3 

2 

1 

0 
0.1 0.2 0.3 0.4 

Spanwise wavenumber parameter 

Figure 7(b) Effect of the free-stream temperature on the growth rate and the unstable band of 

spanwise wavenumbers of the secondary subharmonics. M, = 4.5, R = 956, F = 227, A, = 0.023, 

and the primary wave is 2D second mode. 
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Figure 8(a) The local effect of wall cooling and heating on the growth rate and the unstable 

band of spanwise wavenumbers of the secondary subharmonics. M, = 0.8, R = 950, F = 60, 

A, = 0.02, 8, = 275K, and the primary wave is a 2D first mode. 
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Figure 8(b) The local effect of wall cooling and heating on the growth rate and the unstable 

band of spanwise wavenumbers of the secondary subharmonics. M ,  = 1.6, R = 750, F = 60, 

A, = 0.02, 0, = 205K, and the primary wave is a 2D first mode. 
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Figure 8(c) The local effect of wall cooling and heating on the growth rate and the unstable 

band of spanwise wavenumbers of the secondary subharmonics. M , = 4 . 5 ,  R =9M, F = 227, 

A,  = 0.023, 8, = 62K, and the primary wave is a 2D second mode. 
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Figure 10 Effect of wall cooling on the variation across the boundary layer of the primary 2D 

second mode and the secondary subharmonic eigenfunctions at M,=4.5, R = 956, F =227, 

A, = 0.023, b = 0.25, and 9, = 62K. 
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Figure 11 Effect of wall cooling and wall heating on the contours of the 2D-spanwise com- 

ponent and the 3D-spanwise component of the angular momentum at M, = 1.6, and the condi- 

tions of Figure 12. The x-y plane is at z=O, and the primary wave is a 2D f is t  mode. 
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Figure 12 Effect of wall cooling on the contours of the streamwise and spanwise components 

of the angular momentum of the total 3D flow field at M, = 4.5, and the conditions of Figure 

13. The X-y plane is at z=O, the Z-y plane is at x=O, and the primary wave is a 2D second 

mode. 
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Figure 13(a) The overall effect of wall cooling and heating on the growth rates of the 2D first 

mode primary wave and the secondary subharmonic. Marching downstream includes the 

influence of increasing both A and R .  M, = 0.8, F = 60, b = 0.2, and the initial amplitude of the 

primary wave AOm = 0.0023. 
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Figure 13(b) The overall effect of wall cooling and heating on the growth rates of the 2D first 

mode primary wave and the secondary subharmonic. Marching downstream includes the 

influence of increasing both A and R .  M, = 1.6, F = 60, b = 0.2, and the initial amplitude of the 

primary wave AOm = 0.01. 
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Figure 15 The overall effect of wall cooling on the N-factor of the 2D second mode primary 

wave and on the S-factor of the secondary subharmonic at M, = 4.5, F = 227, b = 0.21. March- 

ing downstream includes the influence of increasing both A and R .  The initial amplitudes of 

the primary wave are AO, = 0.01 and Ao, = 0.03. 
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Figure 16(a) The local effect of wall suction on the growth rate and the unstable band of the 

spanwise wavenumbers of the secondary subharmonics. M, = 0.8, R = 950, F = 60, A,  = 0.02, 

e, = 275K, and the primary wave is a 2D first mode. 
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Figure 16(b) The local effect of wall suction on the growth rate and the unstable band of the 

spanwise wavenumbers of the secondary subharmonics. M, = 1.6, R = 750, F = 60, A, = 0.02, 

6, = 205K, and the primary wave is a 2D first mode. 
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Figure 16(c) The local effect of wall suction on the growth rate and the unstable band of the 

spanwise wavenumbers of the secondary subharmonics. M, = 4.5, R = 956, F = 227, A, = 0.023, 

e, = 62K, and the primary wave is a 2D second mode. 
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Figure 18 Effect of suction on the variation across the boundary layer of the primary 2D 

second mode and the secondary subharmonic eigenfunctions at M, = 4.5, R = 956, F = 227, 

A,,, = 0.023, b = 0.25, and 8, = 62K. 
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Figure 19 Effect of suction on the contours of the 2D-spanwise component and the 3D- 

spanwise component of the angular momentum at M, = 1.6, and the conditions of Figure 16. 

The x-y plane is at z=O, and the primary wave is a 2D f is t  mode. 
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